Photopolymérisation radicalaire en miniemulsion - Archive ouverte du site Alsace Accéder directement au contenu
Thèse Année : 2014

Radical photopolymerization in miniemulsion

Photopolymérisation radicalaire en miniemulsion

Résumé

Issues and potentials of miniemulsion radical photopolymerization were discussed, starting from monomer miniemulsions’ optical properties to the synthesis of new semi-crystalline polysulfide nanoparticles by thiol-ene reaction. First, the relationship between the optical properties of miniemulsion and the polymerization efficiency was clarified. We established the major role of optical scattering on the acrylate nanodroplets’ photopolymerization kinetic, while the absorption was found to play a minor role. Whether diluted or concentrated medium (Kubelka-Munk model), light scattering is attenuated when droplet size decreased. The corollary is a significant improvement of UV light penetration within the reactor vessel leading to an acceleration of the polymerization kinetics. However, this conclusion was mitigated by the fact that compartmentalization effect could not be easily dissociated from optical effects. Note that in concentrated medium (solids content of 30 wt %), beyond 150 nm droplet diameter, the scattering coefficient leveled off regardless of droplet size. An absorbance drop was observed using UV-visible spectroscopy throughout the irradiation of the smallest acrylate miniemulsions (40 nm). This result suggested a polymerization mechanism occurring by monomer diffusion from non-nucleated droplets to growing particles. This non-invasive analysis (no dilution was required) is of high interest to study the nucleation mechanism.In a second part, we demonstrated that acrylate miniemulsion photopolymerization could be performed through a monomer self-initiation mechanism induced by short-wavelength UV irradiation ( < 300 nm). Such original photochemical initiation avoided the use of photoinitiator, thus limiting the risks associated with their residual presence in the final material. The self-initiated photopolymerizations were carried out in a model microreactor (spectroscopic cell of 0.1 to 1 mm thick). The variation of several parameters allowed us to identify key parameters influencing polymerization kinetics such as droplet size, thus corroborating the results of the optical study. The irradiation wavelength and the optical path played a crucial role; the shift towards shorter wavelengths and the sample thickness reduction accelerated both the generation of initiating radicals and the number of nucleated entities. The versatility of the method was demonstrated by fast polymerization (complete conversion achieved within 20 minutes) employing a wide range of acrylate, methacrylate and vinyl acetate monomers. Regarding the self-initiating mechanism, one proved that the initiating species likely originated from a biradical able to abstract or transfer hydrogen from monomer molecules, thereby forming initiating monoradicals. Through this original mechanism, the generation of radicals was constant throughout the polymerization, which impacted the characteristics of the copolymer chains: the polydispersity index tended to increase and the molar masses decreases when compared with a conventional photoinduced process. These photopolymerizations were also carried out in an annular immersion photoreactor and showed the same trends regarding the effect of droplet size as the experiments conducted in unstirred spectroscopic tank. For example, a complete conversion was reached after 1 h for a 60 nm acrylate miniemulsion with a solids content of 30 wt %. As a result, a self-initiated polymerization can generate rapidly a large amount of insoluble growing polymer chains within the droplets. This unique feature was exploited to overcome Ostwald ripening without the addition of a specific costabilizer. Photochemical self-initiation could also be used to form surfactant-free nanolatex via Pickering-stabilized miniemulsion photopolymerization. Indeed, Laponite clay adsorbed at the surface of the droplets showed an excellent UV transparency up to 200 nm. [...]
Les problématiques et potentialités de la photopolymérisation radicalaire en miniémulsion ont été discutées, en partant de l’étude des propriétés optiques des miniémulsions de monomère jusqu’à la synthèse de nouvelles nanoparticules polysulfures semi-cristallines par réaction thiol-ène. En premier lieu, l'interaction entre les propriétés optiques de miniémulsion de monomère et l'efficacité de photopolymérisation a été clarifiée. Nous avons établi le rôle majeur de la diffusion optique sur les cinétiques de photopolymérisation de nanogouttelettes acrylates, tandis que l'absorption s’est révélé de moindre importance. Que ce soit en milieu dilué ou concentré (modèle de Kubelka-Munk), la diffusion de la lumière est atténuée lorsque la taille de gouttelettes diminue. La conséquence immédiate est une amélioration significative de la pénétration de la lumière induisant une accélération des cinétiques de polymérisation. Néanmoins, cette conclusion doit être pondérée car l’effet de compartimentage de la polymérisation radicalaire n’a pu être dissocié des effets optiques. On notera qu’en milieu concentré (contenu en solide de 30 % massique), au-delà de 150 nm pour le diamètre de gouttelette, le coefficient de diffusion atteint un palier et devient indépendant de la taille des gouttelettes. La chute d’absorbance, observée par spectroscopie UV-visible, tout au long de l’irradiation pour des miniémulsions acrylates de faible taille (40 nm) a mis en évidence un mécanisme de polymérisation par diffusion de monomère des gouttelettes non nucléées vers les particules en croissance. Cette analyse non invasive (aucune dilution n’a été nécessaire) présente un intérêt évident pour l’étude du mécanisme de nucléation. Nous avons ensuite démontré que la photopolymérisation pouvait être réalisée en utilisant le caractère auto-amorçant des acrylates sous irradiation UV court ( < 300 nm). Ce type d’amorçage photochimique a permis d’éviter l’emploi de photoamorceur, limitant ainsi les risques liés à leur présence résiduelle dans le matériau final. Les photopolymérisations ont été réalisées dans un microréacteur modèle (cuve spectroscopique d’épaisseur 0,1 à 1 mm). La variation de plusieurs paramètres expérimentaux a permis d’identifier un ensemble de paramètres clés influençant les cinétiques de polymérisation tels que la taille des gouttelettes, corroborant ainsi les résultats de l’étude optique. Les longueurs d’onde d’irradiation et le chemin optique ont joué un rôle tout aussi déterminant ; le décalage vers des longueurs d’onde courtes et la diminution de l’épaisseur de l’échantillon accélèrent à la fois la création de radicaux amorceurs et le nombre d’entités nucléées. La versatilité du procédé a été démontrée en polymérisant rapidement (conversion totale en moins de 20 min) une large gamme de monomères acrylate, méthacrylate ou à base d’acétate de vinyle. En ce qui concerne le mécanisme d’auto-amorçage, nous avons prouvé que les espèces amorçantes provenaient vraisemblablement d’un biradical photoinduit, pouvant arracher ou transférer un hydrogène sur des molécules de monomère pour former des monoradicaux amorceurs. Par le biais de ce mécanisme original, la génération de radicaux est constante tout au long de la polymérisation ce qui pour effet d’impacter les caractéristiques des copolymères formés : l’indice de polymolécularité tend à augmenter et les masses molaires à diminuer par rapport à un processus photoamorcé conventionnel. Ces photopolymérisations ont été réalisées dans un photoréacteur annulaire à immersion et ont montré les mêmes évolutions en fonction de la taille de gouttelettes que lors d’expériences en cuve spectroscopique non agitées. A titre d’exemple, une conversion totale est atteinte en 1 h pour des tailles de gouttelettes de 60 nm et un contenu en solide de 30 %. L’auto-amorçage photoinduit a permis de générer rapidement une grande quantité de chaînes en croissance au sein des gouttelettes. [...]
Fichier principal
Vignette du fichier
2014MULH7111_these_JASINSKI.pdf (8.47 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02073904 , version 1 (20-03-2019)

Identifiants

  • HAL Id : tel-02073904 , version 1

Citer

Florent Jasinski. Photopolymérisation radicalaire en miniemulsion. Autre. Université de Haute Alsace - Mulhouse, 2014. Français. ⟨NNT : 2014MULH7111⟩. ⟨tel-02073904⟩
189 Consultations
527 Téléchargements

Partager

Gmail Facebook X LinkedIn More